1,978 research outputs found

    Mitochondrial dynamics and quality control in Huntington's disease

    Get PDF
    Huntington's disease (HD) is an inherited neurodegenerative disorder caused by polyglutamine expansion mutations in the huntingtin protein. Despite its ubiquitous distribution, expression of mutant huntingtin (mHtt) is particularly detrimental to medium spiny neurons within the striatum. Mitochondrial dysfunction has been associated with HD pathogenesis. Here we review the current evidence for mHtt-induced abnormalities in mitochondrial dynamics and quality control, with a particular focus on brain and neuronal data pertaining to striatal vulnerability. We address mHtt effects on mitochondrial biogenesis, protein import, complex assembly, fission and fusion, mitochondrial transport, and on the degradation of damaged mitochondria via autophagy (mitophagy). For an integrated perspective on potentially converging pathogenic mechanisms, we also address impaired autophagosomal transport and abnormal mHtt proteostasis in HD

    Pollen storage by stingless bees as an environmental marker for metal contamination : spatial and temporal distribution of metal elements.

    Get PDF
    Since the middle of the 20th century, human activities have led to overall ecosystem contamination and to major modifications in landscape structure and composition. Mining activities represent a major source of environmental contamination by metal residues. The objective of our study was to evaluate the presence of heavy metals and other elements on stingless bee pollen, and compare them to samples of Suspended Particulate Material (SPM) in five points a Mineral Province, in Brazil. More than 50 elements were identified by ICP-OES and ICP-MS, after microwave digestion. Overall, we found a strong relation among elements present on pollen and SPM. Samples from the four areas exhibited higher levels of minerals compared to the reference site. Mineral levels varied widely within the two seasonal periods. Some elements, like Pb, Cd, As, Cu, Zn, and Fe were found at levels considered potentially toxic to human health. Pollen stored by stingless bees was a successful bioindicator, and demonstrated the value of quantitative ecological information for detecting air pollution

    Evaluation of matrix effect on the determination of rare earth elements and As, Bi, Cd, Pb, Se and In in honey and pollen of native Brazilian bees (Tetragonisca angustula ? Jata?) by Q-ICP-MS.

    Get PDF
    Bees are considered the main pollinators in natural and agricultural environments. Chemical elements from honey and pollen have been used for monitoring the environment, the health of bees and the quality of their products. Nevertheless, there are not many studies on honey and pollen of native Brazilian bees. The goal of this work was to determine important chemical elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Lu and Yb) along with As, Bi, Cd, Pb, Se and In, in honey and pollen of native Brazilian bees, assessing analytical interferences from the matrix. A proposed analytical method was developed for these elements by quadrupole ICP-MS. Matrix effect was verified in honey matrix in the quantification of As, Bi and Dy; and in pollen matrix for Bi, Cd, Ce, Gd, La, Pb and Sc. The quality of the method was considered satisfactory taking into consideration the recovery rate of each element in the spiked solutions: honey matrix (91.6?103.9%) and pollen matrix (94.1?115.6%). The quantification limits of the method ranged between 0.00041 and 10.3 ?g L?1 for honey and 0.00041?0.095 ?g L?1 for pollen. The results demonstrate that the method is accurate, precise and suitable

    Drought generates large, long-term changes in tree and liana regeneration in a monodominant Amazon forest

    Get PDF
    The long-term dynamics of regeneration in tropical forests dominated by single tree species remains largely undocumented, yet is key to understanding the mechanisms by which one species can gain dominance and resist environmental change. We report here on the long-term regeneration dynamics in a monodominant stand of Brosimum rubescens Taub. (Moraceae) at the southern border of the Amazon forest. Here the climate has warmed and dried since the mid-1990′s. Twenty-one years of tree and liana regeneration were evaluated in four censuses in 30 plots by assessing species abundance, dominance, and diversity in all regeneration classes up to 5 cm diameter. The density of B. rubescens seedlings declined markedly, from 85% in 1997 to 29% in 2018 after the most intense El Niño-driven drought. While the fraction contributed by other tree species changed little, the relative density of liana seedlings increased from just 1 to 54% and three-quarters of liana species underwent a ten-fold or greater increase in abundance. The regeneration community experienced a high rate of species turnover, with changes in the overall richness and species diversity determined principally by lianas, not trees. Long-term maintenance of monodominance in this tropical forest is threatened by a sharp decline in the regeneration of the monodominant species and the increase in liana density, suggesting that monodominance will prove to be a transitory condition. The close association of these rapid changes with drying indicates that monodominant B. rubescens forests are impacted by drought-driven changes in regeneration, and therefore are particularly sensitive to climatic change

    An overview of the current status of CMB observations

    Full text link
    In this paper we briefly review the current status of the Cosmic Microwave Background (CMB) observations, summarising the latest results obtained from CMB experiments, both in intensity and polarization, and the constraints imposed on the cosmological parameters. We also present a summary of current and future CMB experiments, with a special focus on the quest for the CMB B-mode polarization.Comment: Latest CMB results have been included. References added. To appear in "Highlights of Spanish Astrophysics V", Proceedings of the VIII Scientific Meeting of the Spanish Astronomical Society (SEA) held in Santander, 7-11 July, 200

    Fire Effects on Understory Forest Regeneration in Southern Amazonia

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordData Availability Statement: The datasets generated for this study are available on request to the corresponding author.Fire in tropical forests increases tree mortality, degrades forest structure, and reduces carbon stocks. Currently, there are large gaps in understanding how fire affects understory forest structure and composition, interactions with fire recurrence, and long-term impacts. Understanding these changes is critical to evaluate the present and future response of tropical forests to fire. We studied post-fire changes in understory regeneration in forests in Mato Grosso State, southern Amazonia, Brazil, aiming to answer the following questions: (i) does forest structure (basal area) and tree community composition vary with fire frequency and time since the last fire? (ii) does the response differ among strata (e.g., sapling, larger trees)? (iii) are changes in diversity associated with changes in forest structure? We surveyed trees and lianas in previously structurally intact forests that underwent selective logging, followed by different fire histories, including 5 and 16 years after once-burned, 5 years after three times burned, and unburned (control). Overall, species composition (abundance, richness, and number of families) and diversity were highest for the unburned treatment and lowest for the recurrent burned areas. Fire frequency negatively affected plant structure and basal area; basal area of small, medium, and large plants declined significantly by more than 50% in the most frequently burned areas. Richness was positively related to basal area in the three times burned sites and in the 16 years regenerating site for all strata. Our results demonstrate the negative influence of frequent fires on both the composition and structure of small trees in Amazonian forest. These changes to the cohort of small-sized trees may persist and have long-term impacts on forest structure, affecting the capacity, and direction of forest recovery. With wildfire widespread across the region and increasing in frequency, fire may negatively affect tree diversity in remaining selectively logged forests, and affect regional carbon cycling with consequences for the global vegetation carbon sink.Coordination of Improvement of Personnel in Higher Education, Brazil (CAPES

    Soil pyrogenic carbon in southern Amazonia: Interaction between soil, climate, and above-ground biomass

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordData availability statement: The original contributions presented in this study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author/s.The Amazon forest represents one of the world’s largest terrestrial carbon reservoirs. Here, we evaluated the role of soil texture, climate, vegetation, and distance to savanna on the distribution and stocks of soil pyrogenic carbon (PyC) in intact forests with no history of recent fire spanning the southern Amazonia forest-Cerrado Zone of Transition (ZOT). In 19 one hectare forest plots, including three Amazonian Dark Earth (ADE, terra preta) sites with high soil PyC, we measured all trees and lianas with diameter ≥ 10 cm and analyzed soil physicochemical properties, including texture and PyC stocks. We quantified PyC stocks as a proportion of total organic carbon using hydrogen pyrolysis. We used multiple linear regression and variance partitioning to determine which variables best explain soil PyC variation. For all forests combined, soil PyC stocks ranged between 0.9 and 6.8 Mg/ha to 30 cm depth (mean 2.3 ± 1.5 Mg/ha) and PyC, on average, represented 4.3% of the total soil organic carbon (SOC). The most parsimonious model (based on AICc) included soil clay content and above-ground biomass (AGB) as the main predictors, explaining 71% of soil PyC variation. After removal of the ADE plots, PyC stocks ranged between 0.9 and 3.8 Mg/ha (mean 1.9 ± 0.8 Mg/ha–1) and PyC continued to represent ∼4% of the total SOC. The most parsimonious models without ADE included AGB and sand as the best predictors, with sand and PyC having an inverse relationship, and sand explaining 65% of the soil PyC variation. Partial regression analysis did not identify any of the components (climatic, environmental, and edaphic), pure or shared, as important in explaining soil PyC variation with or without ADE plots. We observed a substantial amount of soil PyC, even excluding ADE forests; however, contrary to expectations, soil PyC stocks were not higher nearer to the fire-dependent Cerrado than more humid regions of Amazonia. Our findings that soil texture and AGB explain the distribution and amount of soil PyC in ZOT forests will help to improve model estimates of SOC change with further climatic warming.Coordination for the Improvement of Higher Education Personnel (CAPES)Natural Environment Research Council (NERC

    Savanna turning into forest: concerted vegetation change at the ecotone between the Amazon and “Cerrado” biomes

    Get PDF
    In the “Cerrado”–Amazon ecotone in central Brazil, recent studies suggest some encroachment of forest into savanna, but how, where, and why this might be occurring is unclear. To better understand this phenomenon, we assessed changes in the structure and dynamics of tree species in three vegetation types at the “Cerrado”–Amazon ecotone that are potentially susceptible to encroachment: open “cerrado” (OC), typical “cerrado” (TC) and dense woodland (DW). We estimated changes in density, basal area and aboveground biomass of trees with diameter ≥ 10 cm over four inventories carried out between 2008 and 2015 and classified the species according to their preferred habitat (savanna, generalist, or forest). There was an increase in all structural parameters assessed in all vegetation types, with recruitment and gains in basal area and biomass greater than mortality and losses. Thus, there were net gains between the first and final inventories in density (OC: 3.4–22.9%; TC: 1.8–12.6%; DW: 0.2–8.3%), in basal area (OC: 8.3–18.2%; TC: 2–12.7%; DW: 2.3–8.9%), and in biomass (OC: 10.6–16.4%; TC: 1–12%; DW: 5.2–18.7%). Furthermore, all vegetation types also experienced net gains in forest and generalist species relative to savanna species. A decline in recruitment of savanna species was a likely consequence of vegetation encroachment and environmental changes. Our results indicate, for the first time based on quantitative and standardized multi-site temporal data, that concerted structural changes caused by vegetation encroachment are occurring at the ecotone between the two largest biomes in Brazil
    corecore